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Abstract: Performance measures are studied for a generalized n-site asymmetric simple inclusion
process (G-ASIP), where a general process controls intervals between gate-opening instants. General
formulae are obtained for the Laplace–Stieltjes transform, as well as the means, of the (i) traversal
time, (ii) busy period, and (iii) draining time. The PGF and mean of (iv) the system’s overall load
are calculated, as well as the probability of an empty system, along with (v) the probability that
the first occupied site is site k (k = 1, 2, . . . , n). Explicit results are derived for the wide family of
gamma-distributed gate inter-opening intervals (which span the range between the exponential
and the deterministic probability distributions), as well as for the uniform distribution. It is further
shown that a homogeneous system, where at gate-opening instants gate j opens with probability
pj =

1
n , is optimal with regard to (i) minimizing mean traversal time, (ii) minimizing the system’s

load, (iii) maximizing the probability of an empty system, (iv) minimizing the mean draining time,
and (v) minimizing the load variance. Furthermore, results for these performance measures are
derived for a homogeneous G-ASIP in the asymptotic cases of (i) heavy traffic, (ii) large systems,
and (iii) balanced systems.

Keywords: asymmetric simple inclusion process (ASIP); generalized ASIP (G-ASIP); performance
measures; limit laws

1. Introduction

A tandem stochastic system (TSS) is an n-site network in a series, where random events
cause particles (customers, messages, products, calls, jobs, molecules, etc.) to propagate
unidirectionally, under specific stochastic rules, from one site to the next along the one-
dimensional array of sites (queues, servers, stations, etc.) until exiting the system. Particles
are fed, randomly in time, into the leftmost site and propagate unidirectionally (to the
right) through the system. At the rightmost site, particles exit the system randomly in
time. The random inflow into the leftmost site, the random instants of movement from
site to site, and the random outflow from the rightmost site are all governed by random
processes. This model in different variations has been widely explored in the literature.
In a TSS, each site has a buffer and a gate in front of it. When a site’s gate opens, particles
move to the next site. Varying assumptions on sites’ buffer sizes, as well as on gate (service)
capacities, lead to different models of a TSS.

A well-known, fundamental TSS is the tandem Jackson network (TJN), which has
been investigated thoroughly in many papers and books (see, e.g., [1–7]). In this TSS
model, each site’s buffer size is unlimited. However, the service capacity of each site is
one, which allows only single particles to move from site to site, while the transitions
follow Markovian rules. The TJN is famous for its product-form solution of the joint multi-
dimensional probability generating function (PGF) of the sites’ queue sizes (occupancies).

Another notable TSS is the asymmetric simple exclusion process (ASEP) (see, e.g., [8–11]),
where the buffer size of each site is only one, allowing sites to hold at most a single particle
at a time. Since the buffer size of each site is limited to one, while the service capacity
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of each site might be unlimited, de facto, each site does not service more than a single
particle at a time. The exclusion principle of the ASEP model causes blockings of particles’
forward movements through the system. The analysis of particle movements under these
obstructions is non-trivial and complicated. The ASEP, its various applications, and related
models have been further investigated in [12–24].

An important TSS model that bridges the gap between the TJN and the ASEP is
the asymmetric simple inclusion process (ASIP), introduced recently by Reuveni, Eliazar,
and Yechiali (REY [25]). Similar to the TJN and the ASEP, in the ASIP system, each site has
a buffer where particles accumulate. The buffer size (capacity) of each site, as well as its
service capacity, is unlimited. In contrast to the TJN and ASEP models, where only a single
particle moves forward from site to site, under the ASIP model, when a gate opens (service
at a site is completed), all particles accumulated there move simultaneously to the next site.

In all three TSS models, particles arrive at the first site following a Poisson process,
while gate j (j = 1, 2, . . . , n) opens, independently of other gates, every exponential time at
a site-dependent rate. Various performance measures of the system and limit laws were
studied in [26].

Boxma, Kella, and Yechiali (BKY) [27] extended the analysis of ASIP systems and in-
vestigated a generalized ASIP model where (i) times between gate openings are determined
by a renewal process, O, and (ii) particles arrive at all sites during the time interval between
two gate openings. Buffer capacities are unlimited, and at the instant of a gate opening,
only one gate opens, with gate j opening at a probability pj > 0, ∑n

j=1 pj = 1. When gate j
opens, all particles residing there move simultaneously to gate j + 1. The focus in [27] is on
the derivation of the multi-dimensional joint PGF of the site occupancies.

The current paper concentrates on deriving expressions for key performance measures
for G-ASIP systems with the particles’ arrival at the first site and a general distribution of
gate inter-opening times. Five performance measures are investigated: (i) traversal time—
the random duration of time it takes a particle to traverse through the system, namely,
the time elapsing from the instant a particle is admitted to the first site, until the instant
thereafter it exits the system; (ii) overall load—the total number of particles present in the
system in steady-state; (iii) busy period—the random time duration in which the system is
continuously non-empty; (iv) first occupied site—the first non-empty site in the system; and
(v) draining time—the duration of time it takes the network to clear, namely, the random
time elapsing from the moment the arrival process stops, until the first instant thereafter
that the system becomes empty. Moreover, considering the family of gamma probability
distribution functions, denoted Γ(α, αµ), as gate inter-opening times, which spans the range
of distributions between the exponential (α = 1) and the deterministic (α→ ∞), all have
the same mean E[O] = α

αµ = 1
µ , explicit formulae are derived for the Laplace–Stieltjes

transforms, PGFs, and means of the above performance measures. In addition, we analyze
the system under uniform gate inter-opening times and compare the results to those
obtained for the deterministic distribution.

Section 2 is comprised of five subsections in which each one of the above five perfor-
mance measures is analyzed. Specifically, explicit results are derived for four different gate
inter-opening times: (i) gamma distribution, (ii) exponential distribution, (iii) deterministic
distribution, and (iv) uniform distribution. Comparisons between the uniform and the
deterministic inter-opening times are presented in Sections 2.1–2.3.

In Section 3, the G-ASIP is optimized with respect to various objective functions.
It is shown that a homogeneous G-ASIP (where all gates open with equal probability at
gate-opening instants) is optimal with respect to (i) minimizing the mean traversal time,
(ii) minimizing the mean load system, (iii) maximizing the probability of an empty system,
(iv) minimizing the mean draining time, and (v) minimizing the load variance.

In Section 4, a homogeneous G-ASIP is analyzed for the asymptotic cases of: (i) heavy
traffic, (ii) large systems, and (iii) balanced systems. The five measures treated in Section 2
are further studied in the above cases, with an emphasis on balanced systems. The Laplace
transform, or PGF, of the performance measures, along with their means, are derived for
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the above four different gate inter-opening times. We further show that in the intriguing
case of balanced systems, the five measures have similar behavior and share the same
limiting distributions when gate inter-opening times are: (i) exponential, (ii) deterministic,
or (iii) uniform.

2. Performance Measures

Consider an n-site generalized ASIP where a general gate-opening process controls
the evolution of the system: the time duration between two consecutive gate-opening
instants is a random variable, O, with mean E[O] and Laplace–Stieltjes transform (LST)
Õ(s), while successive intervals between gate openings are i.i.d., all distributed like O. At a
gate-opening instant, only one gate opens, where gate j opens with probability pj > 0,
∑n

j=1 pj = 1. Arriving particles accumulate in front of the system and are admitted into the
first site’s buffer immediately after its first gate opens following their arrival. The number
of arrivals between any two consecutive gate openings has a PGF Â(z), with mean Â′(1).

Let λ = Â′(1)
E[O]

be the particles’ rate of arrival.
The five measures defined above are analyzed, each one in a separate Subsection:

(i) traversal time (Section 2.1), (ii) overall load (Section 2.2), (iii) busy period (Section 2.3),
(iv) first occupied site (Section 2.4), and (v) draining time (Section 2.5). In each subsection,
general results are derived for general inter-opening times, followed by explicit formulae
for the gamma, exponential, deterministic, and uniform distributions of O. Comparisons
between the deterministic and uniform distributions are presented.

2.1. Traversal Time

Let T denote the traversal time of a particle through the system; that is, the time
elapsing from the instant a particle is admitted to the first site until it exits the system (after
passing through all n sites). Clearly, the traversal time is independent of the arrival process.

Let
{

Oj, j = 1, 2, 3 . . .
}

be a sequence of i.i.d. random durations between successive
gate-opening instants, all distributed like O, while Yj denotes the number of gate-opening
instants between two consecutive openings of gate j, which is geometrically distributed
with parameter pj. That is, P

(
Yj = m

)
=
(
1− pj

)m−1 pj, m = 1, 2, 3, . . .. Thus, the sojourn

time of a particle in site j is Tj =
Yj

∑
k=1

Ok, so that the traversal time is T =
n
∑

j=1
Tj, while Tj’s

are independent. The Laplace–Stieltjes transform (LST) of T is given by

T̃(s) = E
[
e−sT

]
=

n

∏
j=1

T̃j(s) =
n

∏
j=1

EYj

[
ÕYj(s)

]
=

n

∏
j=1

∞

∑
m=1

[
Õm(s)

(
1− pj

)m−1 pj

]
=

n

∏
j=1

pjÕ(s)

1−
(
1− pj

)
Õ(s)

, (1)

while its mean is

E[T] = −T̃′(0) = E[O]
n

∑
j=1

1
pj

. (2)

Indeed, as Yj and O are independent, the mean sojourn time of a particle in site j is

E
[
Tj
]
= E

[
Yj
]
· E[O] =

1
pj

E[O].
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2.1.1. Gamma-Distributed Inter-Opening Intervals

Suppose that the inter-opening time O is distributed like Γ(α, αµ), with density

h(t) = e−αµt (αµ)αtα−1

Γ(α) , mean E[O] = α
αµ = 1

µ , and LST Γ̃(α, αµ)(s) =
(

αµ
s+αµ

)α
, where

Γ(α) =
∫ ∞

0 e−αµt(αµ)αtα−1dt. Then, Equation (1) becomes

T̃(s) =
n

∏
j=1

pj

(
αµ

s+αµ

)α

1−
(
1− pj

)( αµ
s+αµ

)α =
n

∏
j=1

pj(
1 + s

αµ

)α
−
(
1− pj

) , (3)

Clearly, E[T] = 1
µ

n
∑

j=1

1
pj

.

Special case 1: Exponential inter-opening intervals
When α = 1, since the geometric (pj) sum of i.i.d exponentials (µ) is exponential with

parameter pjµ, it follows that gate j opens independently every exponential time with
parameter µj = pjµ. Thus, Equation (3) coincides with Equation (4) in [26], namely,

T̃(s) =
n

∏
j=1

pjµ

pjµ + s
=

n

∏
j=1

µj

µj + s
. (4)

Clearly, E[T] =
n
∑

j=1

1
µj

, since a traversing particle sojourns in each site an exponential

time with mean 1
µj

.

Special case 2: Deterministic inter-opening intervals
When α→ ∞ , the Γ(α, αµ) probability distribution becomes a deterministic inter-

opening interval. Then,

lim
α→∞

T̃(s) =
n

∏
j=1

pj

e
s
µ −

(
1− pj

) . (5)

2.1.2. Uniformly Distributed Inter-Opening Intervals

Suppose that the inter-opening time O is uniformly distributed like U
[
0, 2

µ

]
, with den-

sity h(t) = µ
2 , mean E[O] = 1

µ , and LST Õ(s) = µ
2s

(
1− e−

2s
µ

)
.

Then, Equation (1) becomes

T̃(s) =
n

∏
j=1

pj
µ
2s

(
1− e−

2s
µ

)
1−

(
1− pj

) µ
2s

(
1− e−

2s
µ

) =
n

∏
j=1

pj

2s
µ

(
1− e−

2s
µ

)−1
−
(
1− pj

) , (6)

while the mean E[T] is given again by

E[T] = E[O] ·
n

∑
j=1

1
pj

=
1
µ

n

∑
j=1

1
pj

.

2.1.3. Comparison: Deterministic vs. Uniform

Comparing the deterministic PDF against the uniform PDF shows that, although
both have the same mean traversal time, examining Equations (5) and (6) shows that
2s
µ

(
1− e−

2s
µ

)−1
≤ e

s
µ . That is, the value of the Laplace–Stieltjes transform of the traversal

time under the uniform inter-opening times is higher than its corresponding value under
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the deterministic distribution. This readily follows since the variance of the uniform
distribution is higher than the zero variance of the deterministic distribution.

2.2. Overall Load and the Probability of an Empty System

Consider the system in steady-state. Let Xj denote the number of particles (occupancy,

or load) residing in site j right before a gate opening and let Lk =
k
∑

j=1
Xj denote the total

load of the first k sites, k = 1, 2, . . . , n. The overall load of the entire system is L = Ln. It was
shown in Equation (24) in [27] that the PGF of L is given by

GL(z) = E
[
zL
]
=

n

∏
j=1

Â(z)pj

1− Â(z)
(
1− pj

) , (7)

implying that

E[L] = Â′(1)
n

∑
j=1

1
pj

= λ · E[O] ·
n

∑
j=1

1
pj

= λ · E[T],

which is, in fact, Little’s Law.
From Equation (7), the probability that the system is empty is given by

P(L = 0) = GL(0) =
n

∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

) , (8)

where Â(0) is the probability of no arrivals during the inter-opening time O.

2.2.1. Gamma-Distributed Inter-Opening Intervals

As in previous ASIP studies, we assume that the arrival process is independent of the
inter-gate opening distribution and is Poisson with rate λ. Then,

Â(z) =
(

αµ

λ(1− z) + αµ

)α

and Â(0) =
(

αµ

λ + αµ

)α

. (9)

Consequently, substituting Equation (9) in Equation (7) results in

E
[
zL
]
=

n

∏
j=1

pj(
1 + λ(1−z)

αµ

)α
−
(
1− pj

) , (10)

and

P(L = 0) =
n

∏
j=1

pj(
1 + λ

αµ

)α
−
(
1− pj

) . (11)

Note that P(L = 0) is a strictly decreasing function of α, since
(

1 + λ
αµ

)α
is a strictly

increasing function of α for a given ratio of λ
µ . However, the decreasing rate is mild.

For example, consider a homogeneous system with n = 10 sites, where pj =
1
n = 1

10 , λ = 1
10 ,

and µ = 4. Then,

P(L = 0)(α) =
10

∏
j=1

1

10
(

1 + 1
40α

)α
− 9

.

Thus, when α = 1

P(L = 0)(1) =
10

∏
j=1

1

10
(

1 + 1
40

)
− 9

= 0.107,
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while when α becomes large

lim
α→∞

P(L = 0)(α) =
10

∏
j=1

1

10e
1
40 − 9

= 0.104.

That is, for a homogeneous network, the probability of an empty system decreases as
the variability of the gate inter-opening times decreases.

Special case 1: Exponential inter-opening intervals
In the case that gate inter-opening times are exponential (µ) while gate j opens inde-

pendently every exponential
(
µj
)

time, Â(0) = µ
λ+µ , pj =

µj
µ and the result (8) coincides

with Equation (8) in [26], namely,

P(L = 0) = GL(0) =
n

∏
j=1

µ
λ+µ

(
µj
µ

)
1− µ

λ+µ

(
1− µj

µ

) =
n

∏
j=1

µj
λ+µ

1− µ−µj
λ+µ

=
n

∏
j=1

µj

λ + µj
.

That is, the system is empty if all gates open sequentially one after the other, with no
arrivals occurring between gate-opening instants.

Special case 2: Deterministic inter-opening intervals
When α→ ∞ ,

lim
α→∞

E
[
zL
]
=

n

∏
j=1

pj

e
λ(1−z)

µ −
(
1− pj

) . (12)

In this case, Equation (11) becomes

P(L = 0) =
n

∏
j=1

pj

e
λ
µ −

(
1− pj

) . (13)

2.2.2. Uniformly Distributed Inter-Opening Intervals

Suppose the arrival process is Poisson with rate λ and O ∼ U
[
0, 2

µ

]
. Then,

Â(z) =
µ

2λ(1− z)

(
1− e−

2λ(1−z)
µ

)
and Â(0) =

µ

2λ

(
1− e−

2λ
µ

)
. (14)

Consequently, substituting Equation (14) in Equation (7) results in

GL(z) = E
[
zL
]
=

n

∏
j=1

pj

2λ(1−z)
µ

(
1− e−

2λ(1−z)
µ

)−1
−
(
1− pj

) (15)

and

P(L = 0) = GL(0) =
n

∏
j=1

pj

2λ
µ

(
1− e−

2λ
µ

)−1
−
(
1− pj

) . (16)

2.2.3. The Impact of the Inter-Opening Times on P(L = 0): Deterministic vs. Uniform

Comparing Equation (13) with Equation (16), it follows that P(L = 0) under the
uniform distribution is higher than its corresponding value under the deterministic distri-

bution, as 2λ
µ

(
1− e−

2λ
µ

)−1
< e

λ
µ .
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2.3. Busy Period

Let B denote the network’s busy period, which is the time elapsed from the instant
that a particle is admitted to an empty system until the first moment thereafter that the
system becomes empty again. Additionally, let ∆0 be the time elapsed from the instant that
a particle is admitted to the first site until the first instant thereafter that (at least) another
particle is admitted to that site. As before, T denotes the traversal time of a particle, where
T is independent of ∆0. Then,

B =

{
T T < ∆0

∆0 + B′ T ≥ ∆0
, (17)

where B′ is an i.i.d replica of B. Then, the Laplace–Stieltjes transform of B is given by

B̃(s) = E
[
e−sB] = E

[
e−sT

∣∣T < ∆0
]
P(T < ∆0)

+E
[
e−s(∆0+B′)

∣∣∣T ≥ ∆0

]
P(T ≥ ∆0)

We can define fT(t) and g∆0(z) as the probability density function of T and of ∆0,
respectively. We have

E
[
e−sB

]
=

∞∫
0

f (t)e−st

 ∞∫
t

g(z)dz

dt + E
[
e−sB

] ∞∫
0

f (t)

 t∫
0

g(z)e−szdz

dt. (18)

Then,

E
[
e−sB

]
=

∞∫
0

f (t)e−st

(
∞∫
t

g(z)dz

)
dt

1−
∞∫
0

f (t)

(
t∫

0
g(z)e−s·zdz

)
dt

. (19)

When the arrival is Poisson (λ), i.e., g(z) = λe−λz, then

E
[
e−sB

]
=

∞∫
0

f (t)e−(λ+s)tdt

1 + λ
λ+s

∞∫
0

f (t)
(
e−(λ+s)t − 1

)
dt

=
T̃(λ + s)

1 + λ
λ+s

(
T̃(λ + s)− 1

) . (20)

The mean E[B] can be calculated directly by using Equation (17), namely,

E[B] = E[T|T < ∆0]P(T < ∆0) + E[(∆0 + B′)|∆0 ≤ T]P(∆0 ≤ T)
= E[T|T < ∆0]P(T < ∆0) + (E[∆0|∆0 ≤ T] + E[B′|∆0 ≤ T])P(∆0 ≤ T).

Hence, since ∆0, T and B′ are mutually independent,

E[B] =
∞∫
0

t · f (t)

(
∞∫
t

g(z)dz

)
dt +

∞∫
0

f (t)

(
t∫

0
z · g(z)dz

)
dt

+E[B]
∞∫
0

f (t)
t∫

0
g(z)dzdt

Thus,

E[B] =

∞∫
0

t · f (t)

(
∞∫
t

g(z)dz

)
dt +

∞∫
0

f (t)

(
t∫

0
z · g(z)dz

)
dt

1−
∞∫
0

f (t)
t∫

0
g(z)dzdt

. (21)
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When the arrival process is Poisson with rate λ, Equation (21) becomes

E[B] =

∞∫
0

t · f (t)

(
∞∫
t

λe−λzdz

)
dt +

∞∫
0

f (t)

(
t∫

0
z · λe−λzdz

)
dt

1−
∞∫
0

f (t)
t∫

0
λe−λzdzdt

=

∞∫
0

t · f (t)e−λtdt +
∞∫
0

f (t)
(
−t · e−λt − e−λt

λ
+

1
λ

)
dt

1−
∞∫
0

f (t)
(
−e−λt + 1

)
dt

=

1
λ

∞∫
0

f (t)
(
1− e−λt)dt

∞∫
0

f (t)e−λtdt
=

1
λ
· 1− T̃(λ)

T̃(λ)
.

(22)

2.3.1. Gamma-Distributed Inter-Opening Intervals

When the inter-opening time O follows the Gamma distribution Γ(α, αµ) and the
arrival process is Poisson (λ), then substituting Equation (3) in both Equations (20) and (22),
respectively, leads to

E
[
e−sB

]
=

n
∏
j=1

pj(
1 +

λ + s
αµ

)α

−
(
1− pj

)

1 +
λ

λ + s

 n
∏
j=1

pj(
1 +

λ + s
αµ

)α

−
(
1− pj

) − 1


(23)

and

E[B] =
1
λ
·

 n

∏
j=1

1 +

(
1 + λ

αµ

)α
− 1

pj

− 1

 (24)

We conclude that E[B](α) is a mildly strictly increasing function of α since
(

1 + λ
αµ

)α

is a strictly increasing function of α for a given ratio of λ
µ , but the increasing rate is mild,

as seen below.

Example. Consider a homogeneous system with n = 10 sites where pj =
1
n = 1

10 . Suppose that
λ = 1

10 and µ = 4. Substituting the above values in Equation (24) yields

E[B](α) = 10

(
10
∏
j=1

(
10
(

1 + 1
40α

)α
− 9
)
− 1

)
= 10

((
10
(

1 + 1
40α

)α
− 9
)10
− 1
)

E[B](1) = 10
((

10 ·
(

1 + 1
40

)
− 9
)10
− 1
)
= 81.13

E[B](2) = 10

((
10 ·

(
1 + 1

80

)2
− 9
)10
− 1

)
= 84.30

lim
α→∞

E[B](α) = 10
((

10e
1
40 − 9

)10
− 1
)
= 85.51

Special case 1: Exponential inter-opening intervals
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If gate j opens independently every exponential time with parameter µj, by substitut-
ing Equation (3) in Equation (20), we obtain

E
[
e−sB] =

n
∏
j=1

µj

µj + λ + s

1 +
λ

λ + s

n
∏
j=1

µj

µj + λ + s
− λ

λ + s

=

(λ + s)
n
∏
j=1

µj

µj + λ + s

s + λ
n
∏
j=1

µj

µj + λ + s

=
λ + s

s
n
∏
j=1

µj + λ + s
µj

+ λ

=
λ + s

λ + s
n
∏
j=1

(
1 +

λ + s
µj

) .

(25)

Indeed, Equation (25) coincides with Equation (11) in [26], and Equation (26) below
coincides with Equation (10) in [26],

E[B] =
1
λ

(
n

∏
j=1

(
1 +

λ

µj

)
− 1

)
. (26)

Special case 2: Deterministic inter-opening intervals
Taking the limit α→ ∞ in Equation (23) gives

lim
α→∞

E
[
e−sB] = lim

α→∞

n
∏
j=1

pj(
1 +

λ + s
αµ

)α

−
(
1− pj

)

1 +
λ

λ + s

 n
∏
j=1

pj(
1 +

λ + s
αµ

)α

−
(
1− pj

) − 1



=

n
∏
j=1

pj

e
λ+s

µ −
(
1− pj

)

1 +
λ

λ + s


n
∏
j=1

pj

e

λ + s
µ −

(
1− pj

) − 1


,

(27)

while Equation (24) becomes

lim
α→∞

E[B] = lim
α→∞

1
λ
·

 n

∏
j=1

(
1 + λ

αµ

)α
−
(
1− pj

)
pj

− 1

 =
1
λ
·

 n

∏
j=1

e
λ
µ −

(
1− pj

)
pj

− 1

. (28)

2.3.2. Uniformly Distributed Inter-Opening Intervals

Substituting Equation (6) in Equation (20) and in Equation (22) gives

E
[
e−sB

]
=

n
∏
j=1

pj

2(λ+s)
µ

(
1−e−

2(λ+s)
µ

)−1

−(1−pj)

1 + λ
λ+s

 n
∏
j=1

pj

2(λ+s)
µ

(
1−e−

2(λ+s)
µ

)−1

−(1−pj)

− 1


, (29)
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and

E[B] =
1
λ
·

1−
n
∏
j=1

pj

2λ
µ

(
1−e−

2λ
µ

)−1
−(1−pj)

n
∏
j=1

pj

2λ
µ

(
1−e−

2λ
µ

)−1
−(1−pj)

=
1
λ
·

 n

∏
j=1

2λ
µ

(
1− e−

2λ
µ

)−1
−
(
1− pj

)
pj

− 1

. (30)

2.3.3. Comparison between the Deterministic and the Uniform Distributions

Comparing Equation (28) to Equation (30), it follows that the mean busy period under
the uniform distribution is smaller than its corresponding value under the deterministic

distribution, since 2λ
µ

(
1− e−

2λ
µ

)−1
< e

λ
µ .

2.4. First Occupied Site

Let I denote the index of the first occupied site such that P(I = k) denotes the proba-
bility that the first occupied site in the system is site k. Clearly,

P(I = k) = P(X1 = . . . = Xk−1 = 0, Xk > 0) = P(X1 = . . . = Xk−1 = 0)− P(X1 = . . . = Xk = 0).

According to Equation (8), P(X1 = . . . = Xk = 0) = P(Lk = 0) =
k

∏
j=1

Â(0)pj

1−Â(0)(1−pj)
.

Therefore,

P(I = k) = P(Lk−1 = 0)− P(Lk = 0)

=
k−1
∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

) − k
∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

)
=

(
k−1
∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

)(1− Â(0)pk

1− Â(0)(1− pk)

))

=
1− Â(0)
Â(0)pk

k
∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

) .

(31)

Comparing the probabilities of site k + 1 and site k to be the first occupied site, yields

P(I = k + 1)
P(I = k)

=

1− Â(0)
Â(0)pk+1

k+1
∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

)
1− Â(0)
Â(0)pk

k
∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

) =
Â(0)pk

1− Â(0)(1− pk+1)
.

It follows that in the homogeneous case where all pj are equal, the above ratio is
smaller than 1, implying that P(I = k) decreases with k.

2.4.1. Gamma-Distributed Inter-Opening Intervals

In the case that the inter-opening times are Gamma-distributed, substituting Equation (9)
in Equation (31) yields

P(I = k) =

(
1 + λ

αµ

)α
− 1

pk

k

∏
j=1

pj(
1 + λ

αµ

)α
−
(
1− pj

) . (32)

Special case 1: Exponential inter-opening intervals
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Compared with the results in [26] where Â(0) = µ
λ+µ (Poisson arrival) and pj =

µj
µ ,

after some algebra, Equation (32) coincides with Equation (14) in [26], namely,

P(I = k) = λ
µk

k
∏
j=1

µj
λ+µj

.

Special case 2: Deterministic inter-opening intervals
If the inter-opening times are deterministic ( α→ ∞ ), then

P(I = k) =
e

λ
µ − 1
pk

k

∏
j=1

pj

e
λ
µ −

(
1− pj

) . (33)

2.4.2. Uniformly Distributed Inter-Opening Times

If the inter-opening times are uniformly distributed, then

P(I = k) =

2λ
µ

(
1− e−

2λ
µ

)−1
− 1

pk

k

∏
j=1

pj

2λ
µ

(
1− e−

2λ
µ

)−1
−
(
1− pj

) (34)

2.5. Draining Time

Let D denote the length of time from the moment the arrival process stops right after
a gate-opening instant until the system is totally empty. Let Rk be the remaining time from
that moment until the particle that resides in site k exits the system. Then, for a general
gate inter-opening interval O, the mean draining time satisfies

E[D] =
n
∑

k=1
P(I = k)E[Rk]

=
n
∑

k=1

(
1− Â(0)
Â(0)pk

k
∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

))( n
∑

j=k

1
pj

)
· E[O]

(35)

and

E
[
e−sD] = E

[
E
[
e−sD

∣∣I]] = P(L = 0) +
n
∑

k=1
P(I = k)

n
∏
j=k

pjÕ(s)

1−
(
1− pj

)
Õ(s)

=
n
∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

)
+

n
∑

k=1

(
1− Â(0)
Â(0)pk

k
∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

)) n
∏
j=k

pjÕ(s)

1−
(
1− pj

)
Õ(s)

.

(36)

2.5.1. Gamma-Distributed Inter-Opening Intervals

In the case that the inter-opening times are Gamma-distributed, substituting Equation (32)
in Equation (35) and in Equation (36) yields

E[D] =
1
µ
·

n

∑
k=1


(

1 + λ
αµ

)α
− 1

pk

k

∏
j=1

pj(
1 + λ

αµ

)α
−
(
1− pj

)
( n

∑
j=k

1
pj

)
(37)
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and
E
[
e−sD] =

n
∏
j=1

pj(
1+ λ

αµ

)α
−(1−pj)

+
n
∑

k=1

( (
1+ λ

αµ

)α
−1

pk

k
∏
j=1

pj(
1+ λ

αµ

)α
−(1−pj)

)
n
∏
j=k

pj(
1+ s

αµ

)α
−(1−pj)

.
(38)

Special case 1: Exponential inter-opening intervals
When α = 1, Equation (37) and Equation (38) become, respectively,

E[D] =
n
∑

k=1

1− µ

λ + µ
µ

λ + µ

µk
µ

k
∏
j=1

µ

λ + µ

µj

µ

1− µ

λ + µ

(
1−

µj

µ

)

(

n
∑

j=k

1
pj

)
· E[O]

=
n
∑

k=1

(
λ

µk

k
∏
j=1

µj

λ + µj

)(
n
∑

j=k

1
µj

)

and

E
[
e−sD] =

n
∏
j=1

pj(
1 +

λ

µ

)
−
(
1− pj

)

+
n
∑

k=1


(

1 +
λ

µ

)
− 1

pk

k
∏
j=1

pj(
1 +

λ

µ

)
−
(
1− pj

)
 n

∏
j=k

pj(
1 +

s
µ

)
−
(
1− pj

)
=

n
∏
j=1

µpj

λ + µpj
+

n
∑

k=1

(
λ

pkµ

k
∏
j=1

µpj

λ + µpj

)
n
∏
j=k

µpj

s + µpj
,

which coincide with Equation (16) and with Equation (17) in [26].

Special case 2: Deterministic inter-opening intervals
Taking the limit α→ ∞ results in

lim
α→∞

E[D] =
1
µ
·

n

∑
k=1

 e
λ
µ − 1
pk

k

∏
j=1

pj

e
λ
µ −

(
1− pj

)
( n

∑
j=k

1
pj

)
(39)

and
lim

α→∞
E
[
e−sD] = n

∏
j=1

pj

e
λ
µ −(1−pj)

+
n
∑

k=1

(
e

λ
µ −1
pk

k
∏
j=1

pj

e
λ
µ −(1−pj)

)
n
∏
j=k

pj

e
s
µ −(1−pj)

.
(40)

2.5.2. Uniformly Distributed Inter-Opening Intervals

Substituting Equation (34) in Equation (35) and in Equation (36), respectively, yields

E[D] =
n
∑

k=1



2λ

µ

1− e
−

2λ

µ


−1

− 1

pk

k
∏
j=1

pj

2λ

µ

1− e
−

2λ

µ


−1

−
(
1− pj

)


(

n
∑

j=k

1
pj

)
· E[O] (41)
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and

E
[
e−sD] =

n
∏
j=1

pj

2λ

µ

(
1− e−

2λ
µ

)−1
−
(
1− pj

)

+
n
∑

k=1



2λ

µ

1− e
−

2λ

µ


−1

− 1

pk

k
∏
j=1

pj

2λ

µ

1− e
−

2λ

µ


−1

−
(
1− pj

)


.

n
∏
j=k

pj

2s
µ

1− e
−

2s
µ


−1

−
(
1− pj

)

(42)

3. Optimization

Suppose that a G-ASIP network as described above is to be constructed, and suppose
that the probabilities pj of the sites can be determined so as to optimize certain performance
measures. In particular, we seek an optimal allocation of the gate-opening probabilities,
where ∑n

j=1 pj = 1, in order to:

(i) Minimize mean traversal time,

{
E[T] = E[O]

n
∑

j=1

1
pj

}
, which is equivalent to minimiz-

ing mean load,

{
E[L] = λ · E[O] ·

n
∑

j=1

1
pj

}
.

(ii) Maximize the probability of an empty system,

{
P(L = 0) =

n
∏
j=1

Â(0)pj

1−Â(0)(1−pj)

}
.

(iii) Minimize load variance V(L) subject to ∑n
j=1 pj = 1.

(iv) Minimize load variance V(L) subject to a given load mean E[L], where

E[L] = λ · E[O] ·
n
∑

j=1

1
pj

= C.

The equivalent cases in (i) involve a convex objective function and a single linear
constraint. It readily follows that a homogeneous G-ASIP, where pj =

1
n , j = 1, 2, . . . , n,

is the optimal solution.
Case (ii): Maximizing P(L = 0) is equivalent to minimizing the convex function

n
∑

j=1
ln
(

1 + 1−Â(0)
Â(0)pj

)
. Thus, again, the homogeneous G-ASIP is optimal.

Cases (iii) and (iv): By differentiating GL(z) of Equation (7), we obtain (see Appendix A)

V(L) =
(

Â′′ (1)− 2
(

Â′(1)
)2

+ Â′(1)
) n

∑
j=1

1
pj

+
(

Â′(1)
)2

2
n
∑

j=1

1
pj

2 +
n
∑

j=1

1
pj

n
∑

k = 1
k 6= j

1
pk

−
(

Â′(1)
n
∑

j=1

1
pj

)2

It follows that, as in all previous cases, the homogeneous G-ASIP is optimal.
As a result of the above conclusions, we assume a homogeneous G-ASIP for the

following analysis. That is, p1 = . . . = pn = 1
n .
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4. Asymptotic Analysis: The Homogeneous Generalized ASIP

In what follows, we extend the work of [26] for ASIP systems to homogeneous G-ASIP
systems and study the behavior of the performance measures: (i) traversal time, (ii) overall
load, (iii) busy period, (iv) first occupied site, and (v) draining time in the cases of heavy
traffic ( λ→ ∞ ), large systems ( n→ ∞ ), and the more interesting case of balanced systems.
We discuss both means and stochastic limit laws for the above measures.

4.1. Heavy Traffic and Large Systems

In heavy traffic, when λ→ ∞ , the performance measures E[L], E[B], and E[D] all
tend toward infinity, P(L = 0)→ 0 , while P(I = 1)→ 1 . However, the traversal time is
independent of λ, and for a homogeneous system, it is given by E[T] = n2 · E[O].

For a large system, when n→ ∞ , E[T], E[L], E[B], and E[D] all tend toward infinity,
and P(L = 0)→ 0 . In this case, the first occupied site is effectively the first. That is,

lim
n→∞

P(I = 1) = lim
n→∞

1− Â(0)

1− Â(0)
(

1− 1
n

) = 1.

This follows since the gate of the first site, which opens with probability p1 = 1
n → 0 ,

is almost always closed.

4.2. Balanced Systems

Consider a balanced system in a homogeneous generalized ASIP system
(

pj =
1
n

)
,

where the number of sites tends to infinity ( n→ ∞ ), while the mean sojourn time at a site,
nE[O], tends to zero, such that n2·E[O]→ τ , τ < ∞.

4.2.1. Traversal Time

Clearly,
E[T] = n2 · E[O]→ τ.

4.2.2. Overall Load and the Probability of an Empty System

By Little’s Law, E[L] = λ · E[T] = λ · τ.
Substituting pj =

1
n in Equation (7) gives the PGF of the overall load,

GL(z) = E
[
zL] = n

∏
j=1

Â(z)
1
n

1− Â(z)
(

1− 1
n

)
=

(
n

Â(z)
− (n− 1)

)−n
=

(
1 + n

(
1

Â(z)
− 1
))−n

.

(43)

The probability that the system is empty is

P(L = 0) = GL(0) =
(

1 + n
(

1
Â(0)

− 1
))−n

. (44)

In order to investigate the behavior of the performance measures in balanced systems,
it is required to specify the distribution of the inter-opening times. As before, we consider
the wide family of Gamma distributions as well as the uniform distributions.
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4.2.2.1. Gamma-Distributed Inter-Opening Intervals

If the gate inter-opening interval O is distributed like Γ
(

α, αn2

τ

)
such that E[O] = τ

n2

and its LST is Γ̃
(

α, αn2

τ

)
(s) =

(
αn2

sτ+αn2

)α
, then, if the arrival process is Poisson with rate λ,

Â(z) =
(

αn2

τλ(1− z) + αn2

)α

and Â(0) =
(

αn2

τλ + αn2

)α

. (45)

Substituting Equation (45) in Equation (43) and in Equation (44), respectively, gives

GL(z) =
(

1 + n
((

1 +
τλ(1− z)

αn2

)α

− 1
))−n

,

and

P(L = 0) =
(

1 + n
((

1 +
τλ

αn2

)α

− 1
))−n

.

Special case 1: Exponential inter-opening intervals

When α = 1, GL(z) =
(

1 + τλ(1−z)
n

)−n
, so that

lim
n→∞

GL(z) = lim
n→∞

(
1 +

τλ(1− z)
n

)−n
= e−τλ(1−z). (46)

That is, L is distributed as a Poisson random variable with parameter λτ. Equation (46)
coincides with Equation (32) in [26].

The probability that the system is empty is P(L = 0) =
(

1 + τλ
n

)−n
.

If n→ ∞ ,

lim
n→∞

P(L = 0) = lim
n→∞

(
1 +

τλ

n

)−n
= e−τλ,

coinciding with Equation (32) in [26].

Special case 2: Deterministic inter-opening intervals
When α→ ∞ ,

lim
α→∞

GL(z) = lim
α→∞

(
1 + n

((
1 +

τλ(1− z)
αn2

)α

− 1
))−n

=

(
1 + n

(
e

τλ(1−z)
n2 − 1

))−n

and

lim
α→∞

P(L = 0) = lim
α→∞

(
1 + n

((
1 +

τλ

αn2

)α

− 1
))−n

=

(
1 + n

(
e

τλ
n2 − 1

))−n
.

Taking n→ ∞ results in

lim
n→∞

GL(z) = lim
n→∞

(
1 + n

(
e

τλ(1−z)
n2 − 1

))−n
= e−τλ(1−z)

and

lim
n→∞

P(L = 0) = lim
n→∞

(
1 + n

(
e

τλ
n2 − 1

))−n
= e−τλ.
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4.2.2.2. Uniformly Distributed Inter-Opening Intervals

If O ∼ U
[
0, 2τ

n2

]
with E[O] = τ

n2 , then, similarly to Equation (17),

Â(z) =
n2

2τλ(1− z)

(
1− e−

2τλ(1−z)
n2

)
and Â(0) =

n2

2τλ

(
1− e−

2τλ
n2

)
.

Thus,

GL(z) =

(
1 + n

(
2τλ(1− z)

n2

(
1− e−

2τλ(1−z)
n2

)−1
− 1

))−n

,

while the probability that the system is empty is

P(L = 0) = GL(0) =

(
1 + n

(
2τλ

n2

(
1− e−

2τλ
n2

)−1
− 1

))−n

.

If n→ ∞

lim
n→∞

GL(z) =

1 + n

2τλ(1− z)
n2

1− e
−

2τλ(1− z)
n2


−1

− 1



−n

= lim
n→∞

1 + n

 1

1− τλ(1−z)
n2

− 1

−n

= lim
n→∞

(
1 +

(
τλ(1− z)

n

))−n
= e−τλ(1−z),

while the probability that the system is empty is

lim
n→∞

P(L = 0) = lim
n→∞

1 + n

2τλ

n2

1− e
−

2τλ

n2

−1

− 1



−n

= lim
n→∞

1 + n

2τλ

n2

1−

1− 2τλ

n2 +

(
2τλ

n2

)2

2
− . . .



−1

− 1



−n

= lim
n→∞

1 + n


 1

1− τλ

n2

− 1



−n

= lim
n→∞

(
1 + n

(
τλ
n2

))−n
= e−λτ .

We conclude that in balanced systems, the limiting behavior of L when n tends to
infinity is the same for all three gate inter-opening distributions: exponential, deterministic,
and uniform.

4.2.3. Busy Period

Substituting pj =
1
n in Equation (20) gives the Laplace transform of the busy period

under a general inter-opening time O:

E
[
e−sB

]
=

(
1− n

(
1− 1

Õ(λ + s)

))−n

1 +
λ

λ + s

(1− n

(
1− 1

Õ(λ + s)

))−n

− 1

 (47)
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while the mean is given by

E[B] =
1
λ
·

(1− n

(
1− 1

Õ(λ)

))−n

− 1

. (48)

4.2.3.1. Gamma-Distributed Inter-Opening Intervals

If O is distributed like Γ
(

α, αn2

τ

)
, then

Õ(s) =
(

1 +
sτ

αn2

)−α
. (49)

Substituting Equation (49) in both Equation (47) and in Equation (48), respectively,
leads to

E
[
e−sB

]
=

(
1− n

(
1−

(
1 + (λ+s)τ

αn2

)α))−n

1 + λ
λ+s

((
1− n

(
1−

(
1 + (λ+s)τ

αn2

)α))−n
− 1
) ,

while the mean is given by

E[B] =
1
λ
·
((

1− n
(

1−
(

1 +
λτ

αn2

)α))−n

− 1

)
.

Special case 1: Exponential inter-opening intervals
When α = 1,

E
[
e−sB

]
=

(
1 + (λ+s)τ

n

)−n

1 + λ
λ+s

((
1 + (λ+s)τ

n

)−n
− 1
)

and

E[B] =
1
λ
·
((

1 +
λτ

n

)−n
− 1

)
.

When n→ ∞

lim
n→∞

E
[
e−sB] = e−(λ+s)τ

1 +
λ

λ + s
(
e−(λ+s)τ − 1

) =
λ + s

(λ + s)e(λ+s)τ + λ
(
1− e(λ+s)τ

) =
λ + s

se(λ+s)τ + λ

which coincides with Equation (33) in [26]. Then,

lim
n→∞

E[B] =
1
λ
·
(

e−λτ − 1
)

.

Special case 2: Deterministic inter-opening time
When α→ ∞ ,

lim
α→∞

E
[
e−sB

]
=

(
1− n

(
1− e

(λ+s)τ
n2

))−n

1 + λ
λ+s

((
1− n

(
1− e

(λ+s)τ
n2

))−n
− 1

)

and

lim
α→∞

E[B] =
1
λ
·
((

1− n
(

1− e
λτ
n2

))−n
− 1

)
.



Mathematics 2022, 10, 594 18 of 25

When n→ ∞

lim
n→∞

E
[
e−sB] = lim

n→∞

(
1−n

(
1−
(

1+
(λ + s)τ

n2

)))−n

1+
λ

λ + s

((
1−n

(
1−
(

1+ (λ+s)τ
n2

)))−n
−1
)

= lim
n→∞

(
1 +

(λ + s)τ
n

)−n

1 +
λ

λ + s

((
1 +

(λ + s)τ
n

)−n
− 1

)

=
e−(λ+s)τ

1 +
λ

λ + s
(
e−(λ+s)τ − 1

) =
λ + s

se(λ+s)τ + λ
,

and

lim
n→∞

E[B] = lim
n→∞

1
λ ·
((

1− n
(

1− e
λτ
n2

))−n
− 1

)
= lim

n→∞
1
λ ·
((

1− n
(

1−
(

1 + λτ
n2

)))−n
− 1
)

= lim
n→∞

1
λ ·
((

1 + λτ
n

)−n
− 1
)
= 1

λ ·
(
e−λτ − 1

)
.

It follows that, when n→ ∞ , E[B] is the same when α = 1 (exponential) and when
α→ ∞ (deterministic). The same holds for E

[
e−sB], the LST of the busy period.

4.2.3.2. Uniformly Distributed Inter-Opening Intervals

If O is uniformly distributed like U
[
0, 2τ

n2

]
, mean E[O] = τ

n2 , and LST

Õ(s) = n2

2τs

(
1− e−

2τs
n2

)
, then

E
[
e−sB

]
=

(
1− n

(
1− 2τ(λ+s)

n2

(
1− e−

2τ(λ+s)
n2

)−1
))−n

1 + λ
λ+s

(1− n

(
1− 2τ(λ+s)

n2

(
1− e−

2τ(λ+s)
n2

)−1
))−n

− 1


and

E[B] =
1
λ
·

(1− n

(
1− 2τλ

n2

(
1− e−

2τλ
n2

)−1
))−n

− 1

.
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If n→ ∞ ,

lim
n→∞

E
[
e−sB] = lim

n→∞

1− n

1− 2τ(λ + s)
n2

1− e
−

2τ(λ + s)
n2


−1


−n

1 +
λ

λ + s


1− n

1− 2τ(λ + s)
n2

1− e
−

2τ(λ + s)
n2


−1


−n

− 1



= lim
n→∞

(
1 +

τ(λ + s)
n

)−n

1 +
λ

λ + s

((
1 +

τ(λ + s)
n

)−n
− 1

)

=
e−τ(λ+s)

1 +
λ

λ + s
(
e−τ(λ+s) − 1

) =
(λ + s)e−τ(λ+s)

(λ + s) + λe−τ(λ+s) − λ
=

λ + s
λ + seτ(λ+s)

,

and

lim
n→∞

E[B] =
1
λ
·
((

1 +
τλ

n

)−n
− 1

)
=

1
λ
·
(

e−τλ − 1
)

.

Thus, similarly to L, the distribution of B in balanced systems when n tends to infinity
is the same for exponential, deterministic, and uniform distributions.

4.2.4. First Occupied Site

For a general inter-opening time O, substituting pj =
1
n in Equation (31) yields

P(I = k) =
1− Â(0)

Â(0)
1
n

 Â(0)
1
n

1− Â(0)
(

1− 1
n

)


k

= n
(

1
Â(0)

− 1
)(

1− n
(

1− 1
Â(0)

))−k

4.2.4.1. Gamma-Distributed Inter-Opening Intervals

In the case that O is Gamma-distributed, using Â(0) =
(

αn2

τλ+αn2

)α
results in

P(I = k) = n
((

1 +
τλ

αn2

)α

− 1
)(

1− n
(

1−
(

1 +
τλ

αn2

)α))−k

.

In what follows, we define the scaled first occupied site Î = I
n and use a Riemann sum,

where lim
n→∞

k
∑

i=1
f
(

i
n

)
1
n =

x∫
0

f (t)dt and x = k
n .

Special case 1: Exponential inter-opening intervals

P(I = k) =
τλ

n

(
1 +

τλ

n

)−k
.

When n→ ∞

lim
n→∞

P
(

Î ≤ x
)

= lim
n→∞

k
∑

i=1

τλ
n

(
1 + τλ

n

)−i

= τλ lim
n→∞

k
∑

i=1

((
1 + τλ

n

)n)− i
n 1

n = τλ
x∫

0
e−τ·λ·tdt = 1− e−λτx.

Special case 2: Deterministic inter-opening intervals
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When α→ ∞

lim
α→∞

P(I = k) = lim
α→∞

n
((

1 + τλ
αn2

)α
− 1
)(

1− n
(

1−
(

1 + τλ
αn2

)α))−k

= n
(

e
τλ
n2 − 1

)(
1− n

(
1− e

τλ
n2

))−k
.

If n→ ∞

lim
n→∞

P
(

Î ≤ x
)
= lim

n→∞

k

∑
i=1

τλ

n

(
1 +

τλ

n

)−i
= 1− e−λτx,

Again, it follows that for both exponential and deterministic distributions, the scaled
first occupied site follows an exponential distribution with parameter (λτ).

4.2.4.2. Uniformly Distributed Inter-Opening Intervals

Substituting Â(0) = n2

2τλ

(
1− e−

2τλ
n2

)
in P(I = k) in Section 4.2.4.1 leads to

P(I = k) = n

(
2τλ
n2

(
1− e−

2τλ
n2

)−1
− 1

)(
1− n

(
1− 2τλ

n2

(
1− e−

2τλ
n2

)−1
))−k

.

When n→ ∞ ,

lim
n→∞

P(I = k) = lim
n→∞

n

(
2τλ
n2

(
1− e−

2τλ
n2

)−1
− 1

)(
1− n

(
1− 2τλ

n2

(
1− e−

2τλ
n2

)−1
))−k

= lim
n→∞

n

(
2τλ
n2

(
1−

(
1− 2τλ

n2 + 2(τλ)2

n4

))−1
− 1

)
·

(
1− n

(
1− 2τλ

n2

(
1−

(
1− 2τλ

n2 + 2(τλ)2

n4

))−1
))−k

= lim
n→∞

n
((

1− τλ
n2

)−1
− 1
)(

1− n
(

1−
(

1− τλ
n2

)−1
))−k

= lim
n→∞

τλ
n

(
1 + τλ

n

)−k
.

We conclude that when n→ ∞ the exponential, deterministic and uniform distribu-
tions yield the same exponential-type result.

4.2.5. Draining Time

Substituting pj =
1
n in Equation (36) yields

E
[
e−sD] =

(
1 + n

(
1

Â(0)
− 1
))−n

+
n
∑

k=1

(
n
(

1
Â(0)
− 1
)(

1 + n
(

1
Â(0)
− 1
))−k

)(
1 + n

(
1

Õ(s)
− 1
))k−n−1 (50)

4.2.5.1. Gamma-Distributed Inter-Opening Intervals

Substituting Â(0) =
(

αn2

τλ+αn2

)α
in Equation (50) gives

E
[
e−sD] =

(
1 + n

((
1 + τλ

αn2

)α
− 1
))−n

+
n
∑

k=1

(
n
((

1 + τλ
αn2

)α
− 1
)(

1 + n
((

1 + τλ
αn2

)α
− 1
))−k

)(
1 + n

((
1 + sτ

αn2

)α
− 1
))k−n−1

.

Special case 1: Exponential inter-opening intervals
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When α = 1,

E
[
e−sD] =

(
1 + τλ

n

)−n
+ τλ

n

n
∑

k=1

(
1 + τλ

n

)−k(
1 + sτ

n
)k−n−1

=
(

1 + τλ
n

)−n
+ τλ

n

n
∑

k=1

(
n

n+τλ

)k( n
n+sτ

)n−k+1

=
(

1 + τλ
n

)−n
+ τλ

n
n

n+τλ
n

n+sτ
( n

n+τλ )
n−( n

n+sτ )
n

n
n+τλ−

n
n+sτ

=
(

1 + τλ
n

)−n
+ λ

(1+ τλ
n )
−n−(1+ sτ

n )
−n

s−λ .

When n→ ∞ ,

lim
n→∞

E
[
e−sD

]
= e−τλ + λ

e−τλ − e−τs

s− λ
=

se−τλ − λe−τs

s− λ
,

which coincides with Equation (36) in [26].
By differentiation,

E[D] = − d
ds

E
[
e−sD

]
s=0

= −−λe−τλ − λ2τ + λ

λ2 = τ − 1− e−τλ

λ
.

Special case 2: Deterministic inter-opening intervals
When α→ ∞ ,

lim
α→∞

E
[
e−sD] =

(
1 + n

(
e

τλ
n2 − 1

))−n

+
n
∑

k=1

(
n
(

e
τλ
n2 − 1

)(
1 + n

(
e

τλ
n2 − 1

))−k
)(

1 + n
(

e
τs
n2 − 1

))k−n−1

When n→ ∞

lim
n→∞

E
[
e−sD] = lim

n→∞

(
1 + n

(
1 + τλ

n2 + . . .− 1
))−n

+ lim
n→∞

n
∑

k=1

(
n
(

1 + τλ
n2 + . . .− 1

)(
1 + n

(
1 + τλ

n2 + . . .− 1
))−k

)(
1 + n

(
1 + τs

n2 + . . .− 1
))k−n−1

= lim
n→∞

(
1 + τλ

n

)−n
+ lim

n→∞

n
∑

k=1

(
τλ
n

(
1 + τλ

n

)−k
)(

1 + τs
n
)k−n−1

= se−τλ−λe−τs

s−λ .

4.2.5.2. Uniformly Distributed Inter-Opening Intervals

E
[
e−sD] =

(
1 + n

(
2τλ
n2

(
1− e−

2τλ
n2

)−1
− 1

))−n

+
n
∑

k=1

n

(
2τλ
n2

(
1− e−

2τλ
n2

)−1
− 1

)(
1 + n

(
2τλ
n2

(
1− e−

2τλ
n2

)−1
− 1

))−k
·(

1 + n

(
2τs
n2

(
1− e−

2τs
n2

)−1
− 1

))k−n−1

When n→ ∞ ,
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lim
n→∞

E
[
e−sD] = lim

n→∞

1 + n

 2τλ
n2

(
1−

(
1− 2τλ

n2 +

(
2τλ
n2

)2

2 − . . .

))−1

− 1

−n

+ lim
n→∞

n
∑

k=1

n

 2τλ
n2

(
1−

(
1− 2τλ

n2 +

(
2τλ
n2

)2

2 − . . .

))−1

− 1

1 + n

 2τλ
n2

(
1−

(
1− 2τλ

n2 +

(
2τλ
n2

)2

2 − . . .

))−1

− 1

−k


·

1 + n

 2τs
n2

(
1−

(
1− 2τs

n2 +

(
2τs
n2

)2

2 − . . .

))−1

− 1

k−n−1

which gives

lim
n→∞

E
[
e−sD] = lim

n→∞

1 + n

 2τλ
n2

(
2τλ
n2 −

(
2τλ
n2

)2

2

)−1

− 1

−n

+ lim
n→∞

n
∑

k=1

n

 2τλ
n2

(
2τλ
n2 −

(
2τλ
n2

)2

2

)−1

− 1

1 + n

 2τλ
n2

(
2τλ
n2 −

(
2τλ
n2

)2

2

)−1

− 1

−k


·

1 + n

 2τs
n2

(
2τs
n2 −

(
2τs
n2

)2

2

)−1

− 1

k−n−1

.

Hence,

lim
n→∞

E
[
e−sD] = lim

n→∞

(
1 +

τλ

n

)−n
+ lim

n→∞

n
∑

k=1

(
τλ

n

(
1 +

τλ

n

)−k
)(

1 +
τs
n

)k−n−1
=

se−τλ − λe−τs

s− λ

Again, the exponential, deterministic, and uniform distributions admit the same result.

5. Summary

This paper extends the research on generalized ASIP systems where a general renewal
process controls intervals between gate-opening instants. Expressions are derived for the
Laplace–Stieltjes transform, or PGF, as well as the means of various performance measures.
Explicitly, it is shown that:

(i) The LST of the traversal time T is given by

T̃(s) =
n

∏
j=1

pjÕ(s)

1−
(
1− pj

)
Õ(s)

,

where Õ(s) is the LST of the intervals between successive gate openings, and pj is
the probability that gate j opens at a gate-opening instant. The mean traversal time is
given by

E[T] = E[O]
n

∑
j=1

1
pj

.

(ii) When the arrival process is Poisson (λ), the LST of the busy period B is given by

E
[
e−sB

]
=

T̃(λ + s)

1 + λ
λ+s

(
T̃(λ + s)− 1

) ,

with mean E[B] = 1−T̃(λ)
λ·T̃(λ) .
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(iii) The probability that the first occupied site is site k is given by

P(I = k) =
1− Â(0)
Â(0)pk

k

∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

) ,

where Â(z) is the PGF of the number of arrivals at the first site during an inter-opening
interval O.

(iv) The LST of the draining time D is given by

E
[
e−sD] = n

∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

) + n
∑

k=1

(
1− Â(0)
Â(0)pk

k
∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

)) n
∏
j=k

pjÕ(s)

1−
(
1− pj

)
Õ(s)

while the mean draining time is

E[D] =
n

∑
k=1

(
1− Â(0)
Â(0)pk

k

∏
j=1

Â(0)pj

1− Â(0)
(
1− pj

))( n

∑
j=k

1
pj

)
· E[O].

Explicit results are obtained for the family of Gamma-distributed inter-opening in-
tervals (that span the range between the exponential and the deterministic probability
distributions), as well as for the uniform distribution. It is further shown that a homo-
geneous system, where at gate-opening instants gate j opens with probability pj = 1

n ,
is optimal with respect to (i) minimizing mean traversal time, (ii) minimizing the system’s
load, (iii) maximizing the probability of an empty system, (iv) minimizing mean drain-
ing time, and (v) minimizing the load variance. The asymptotic cases of (i) heavy traffic,
(ii) large systems, and (iii) balanced systems are further investigated for a homogeneous
system. It is further shown that in the intriguing case of balanced systems when the gate
inter-opening times distributions are either exponential, deterministic, or uniform, in all
three cases:

The system’s load PGF, GL(z), satisfies

lim
n→∞

GL(z) = e−τλ(1−z),

where L denotes the total load of the system, and τ is the mean traversal time in a balanced
system. The probability that the system is empty is lim

n→∞
P(L = 0) = e−τλ.

The LST of the busy period B is given by

lim
n→∞

E
[
e−sB

]
=

λ + s
λ + se(λ+s)τ

,

with mean lim
n→∞

E[B] = 1
λ ·
(
e−τλ − 1

)
.

The LST of the draining time D obeys

lim
n→∞

E
[
e−sD

]
=

se−τλ − λe−τs

s− λ
,

and its mean satisfies lim
n→∞

E[D] = τ − 1−e−τλ

λ .
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Appendix A

From Equation (7),

GL(z) =
n

∏
j=1

Â(z)pj

1− Â(z)
(
1− pj

) .

The load variance is calculated by differentiating GL(z) twice. We get

GL
′(z) =

n

∑
j=1

Â′(z)pj(
1− Â(z)

(
1− pj

))2

n

∏
k = 1
k 6= j

Â(z)pk

1− Â(z)(1− pk)
.

Differentiating again,

G′′L(z) =
n
∑

j=1
pj

Â′′ (z)(1−Â(z)(1−pj))+2(Â′(z))
2
(1−pj)

(1−Â(z)(1−pj))
3

n
∏

k = 1
k 6= j

Â(z)pk
1−Â(z)(1−pk)

+
n
∑

j=1

Â′(z)pj

(1−Â(z)(1−pj))
2

n
∑

k=1
k 6=j

Â′(z)pk

(1−Â(z)(1−pk))
2

n
∏

i = 1
i 6= k, j

Â(z)pi
1−Â(z)(1−pi)

.

Substituting z = 1,

G′′L(1) = E
[
L2]− E[L] =

n
∑

j=1

Â′′ (1)pj+2(Â′(1))
2
(1−pj)

pj
2 +

n
∑

j=1

Â′(1)
pj

n
∑

k = 1
k 6= j

Â′(1)
pk

=
(

Â′′ (1)− 2
(

Â′(1)
)2
) n

∑
j=1

1
pj
+
(

Â′(1)
)2

2
n
∑

j=1

1
pj

2 +
n
∑

j=1

1
pj

n
∑

k = 1
k 6= j

1
pk

,

where E[L] = Â′(1)
n
∑

j=1

1
pj

,

E
[
L2] = (Â′′ (1)− 2

(
Â′(1)

)2
+ Â′(1)

) n
∑

j=1

1
pj
+
(

Â′(1)
)2

2
n
∑

j=1

1
pj

2 +
n
∑

j=1

1
pj

n
∑

k = 1
k 6= j

1
pk

.

Therefore,

V(L) = E
[
L2]− E2[L] =

(
Â′′ (1)− 2

(
Â′(1)

)2
+ Â′(1)

) n
∑

j=1

1
pj

+
(

Â′(1)
)2

2
n
∑

j=1

1
pj

2 +
n
∑

j=1

1
pj

n
∑

k = 1
k 6= j

1
pk

−
(

Â′(1)
n
∑

j=1

1
pj

)2

.
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